Chapter 3.8: Derivatives of Inverse Functions and
Logarithms



Inverse Function

Tangent lines will also flip
across the line y = x.

If y = mx + b is a tangent line to
y = f(x) at (a,f(a)),

then x = my + b is the tangent line to
y =f"1(x) at (f(a), a).

Note x = my + b becomes
y = m(x—b).

The slope is a reciprocal: +.
m

Functions are related to their inverses by
flipping across the line y = x.

Recall: f has to passes the horizontal line test to have inverse.



Derivatives of Inverse Functions

)] = FI(f-1(x))

Derivation can be done using implicit
function approach:

(0 = x
2] - 21
F(FY(x)) - dii [f_l(x)} ~1
d%[f )] = f’(f—ll(x))
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Example: f(x) = x3 +4x +5.
Compute £ (f~1(x)) at x = 10.
We need to compute

d [g— 1

dx [f 1(10)} — F(F1(10))"

We solve f~1(10) as

10=x>+4x+5
0=x3+4x-5
0=(x—1)-(x*+x+5)

Hence f~1(10) = 1.

Or you may guess f~1(10) =1 :-)
Compute f'(x) = 3x% + 4.

Hence f/(f~1(10)) = f}(1) = 7.

d

—1 o 1 -
o [F1(10)] = —7=r =

FI(F1(10))

1
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Recall Exponential and Log Functions

28

f(x) = e < F1(x) = In(x)
e’e? = ™™ &5 In(ab) = In(a) + In(b)

(e?)’ < In(a") = blin(a

— =" Hln(%) Ina—Inb

e = x ¢ In(e¥) = x

el=ewin(e)=1

e =1«1In(1)=0



Derivative of In(x)

Using inverse derivative

d 1

R =

E{'”(X)] - Inl(x)
s lmea]=

Using implicit function differentiation

y=Inx
e =x
d d
— (e¥) = —
dx(e) dx x)
dy
vy _q
© dx
dy 1 1

dx ey X

d
Interesting: = [x*] = kx*~*. How could you get x~* on the right-hand side?
X
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Examples for Derivatives with In

1. — [In(3x)] 3—X 3= %
d 27 5 1
2. — [tlIn(8)]?] = [In(6)]* + - 2[In(1)] - ;
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Logarithmic Differentiation

Idea: Instead of using
y =f(x)
dy y
dx f'(x)

First take In of both sides and then take
the derivative.

y = f(x)
In(y) = In(f(x))

ldy d
= = In(F(x)]

y dx
A G0}

dy d
&= 00— ()

Example: y =

<
S &

dy
dx

x(x+1)

x(x+1)
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X | = X\F—‘M“_‘
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Sometimes In(f(x)) is simpler for taking derivative than f(x).
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Logarithmic Differentiation Examples

Use logarithmic differentiation to compute the derivatives of following functions.
Note we computed these already with different method.

y=3
y=3"
In(y) = In(3%)

9 )] = 2 xin3)
1dy
;& =In(3)
dy y
= =In(3) -3
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y=x
y =x
In(y) = In (x)
In(y) = xIn(x)
9 Tin()] = 2 xin(x)
1dy
)7/& =In(x)+x-=
Yy () +1)
dy



Logarithmic Differentiation Examples Round Il

Use logarithmic differentiation to compute the derivatives of following:

y:aL f(t)=t(t+1)(t+2)
t+1
N f(t) = t(t +1)(t +2)
Y=A\lvr11 In(f(t)) = In(t(t + 1)(t + 2))
; In(F(t)) = In(t) 4 In(t + 1) + In(t + 2)
In(y)=In{(¢{/——
1( t+1> j{ (F(t )}:d{ t) + In(t 4+ 1) + In(t 4
In(y):f[ln()—ln(t-i-l)] F(t) = 1+ 1 N 1
J d f() tt+1 0 t+2
= in(y)| d{ [in(t) - '”(f“)]} (t):tt+1)(t+2)
1dy 1/1 1 1
y dx 3<tt+1> <t t+2>
dy 1 ] ¢t 1 1
a3 Ver1 (t t+1>
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Chapter 3.8 Recap

If y = f(x) then
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